High resolution urban air quality sensing at scale
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The proposition of exploiting taxi fleets as a platform to sense ur-
ban environments has come into prominence in recent years due
to the many advantages it offers both in terms of the scale and
the resolution that monitoring can take place, but also due to eco-
nomic factors that can determine the feasibility and longevity of a
sensing project [1]. Taxi units as well as ride-sharing vehicles are
omnipresent across time and space within the territory of a city and
collecting various forms of signals in their surroundings at high
spatio-temporal granularity is possible. Moreover, unlike purpose-
built monitoring vehicles that could be deployed by city authorities
or private organizations interested in environmental monitoring for
instance, taxis do not require explicit commissioning to move about
a city, a process that is very expensive to execute presenting a major
unit economics challenge. In the meantime, one of the most signifi-
cant issues that has concerned citizens, urban authorities and other
governing bodies over the past decades is the ability to consistently
monitor urban air quality. Growing research evidence points that
poor environmental and atmospheric conditions in urban environ-
ments are one of the lead causes of premature death and a number
of age long conditions such as asthma or other respiratory diseases
including lung cancer [2], negatively affecting billions of people
worldwide that reside at urban and urban-proximate areas. One of
the most resonating ideas to perform air quality monitoring at scale
has been the initiation of citizen led projects [3] which have been
inspired by numerous crowd-sourcing projects that have emerged
in the last twenty years and which have enabled the successful
collection of data on mapping, social activity and mobility amongst
others. Those projects come however with their own challenges
such as the need for wide citizen participation rates in addition to
deployment related and operational obstacles. Ubiquitous sensing
technologies on the other hand can be deployed in existing taxi
fleets at scale in an economically viable manner. Over the recent
years Firefly ! has developed and deployed a nation-wide and inter-
nationally expanding technology platform the core components of
which are a digital display deployed on top of taxis and ride sharing
vehicles, and a cloud orchestrated edge-capable software system
that communicates information across the display network in real
time. The display installation has offered a unique opportunity to
deploy a number of sensors that can collect contextual signals of
a vehicle’s environment as it navigates the city. A key sensor in
the display panel is a dust sensor measuring the number of units
of suspended particulate matter PM2.5 in the air volume (particle
concentration with diameters that are generally 2.5 micrometers
and smaller in yg/m3). Each sensor measures PM2.5 particles ap-
proximately every 60 seconds. As Firefly taxis navigate the city
covering over time a large part of the street network, these data is
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Figure 1: Dallas Street Network Colored according to max
PM2.5 levels recorded (brighter color signifies higher levels).

coupled with GPS sourced mobility information effectively offering
a highly detailed view of pollution levels in the city. In Figure 1,
we demonstrate the spatial resolution of the data by visualizing
the maximum PM2.5 concentration recorded at the street segment
level. Immediately two key observations can be made. Firstly, the
large heterogeneity of pollution levels emerging in the various lo-
cations of the city, highlighting how novel analytical insights can
be obtained when diving beyond the aggregate view of a large geo-
graphic area. Secondly, higher pollution levels are recorded around
the center, which hosts the denser parts of the build environment,
as well as the main street network arteries which form the traffic
backbone of the city. In Figure 2 we plot the probability distribu-
tions of PM2.5 readings in histogram form across the eight cities
we study in the dataset (value range 0-30). While all cities follow
a common pattern with the probability dropping significantly as
PM2.5 values rise, there are notable variations across cities with
some having their probability mass shifted more towards higher
values. Important questions in this setting revolve around the un-
derstanding of what urban structural as well as environmental and
population activity characteristics raise the probability of higher
pollution concentrations in a city. We also compare the data col-
lected by Firefly with air quality monitors by citizen led projects as
well as government agencies. In Table 1 we report basic statistical
properties of the data collected by Firefly taxis, ranking cities ac-
cording to mean pollution level. We note how dense cities known
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Figure 2: Per City PM2.5 Densities (0-30 value range).

City Data points  Mean SD Rank
Dallas 3,337,678.00  8.11 12.81 1.00
New York 42,272,355.00 7.58 11.82  2.00
Chicago 16,557,911.00 7.45 8.73 3.00
Los Angeles 15,761,095.00 6.38 8.71 4.00
San Francisco 13,418,809.00 6.22 8.07 5.00
Austin 4,246,054.00 6.11 8.69 6.00
Miami 12,067,138.00 4.73 6.20  7.00
Las Vegas 37,189,840.00 2.64 6.83 8.00
Table 1: City level PM2.5 basic statistics, Firefly Taxis
City PM2.5
Los Angeles-Long Beach-Anaheim, CA 12.1
Las Vegas-Henderson-Paradise, NV 10.5
Chicago-Naperville-Elgin, IL-IN-WI 10
Dallas-Fort Worth-Arlington, TX 9.8
San Francisco-Oakland-Hayward, CA 9.9
Austin-Round Rock, TX 9.5

Miami-Fort Lauderdale-West Palm Beach, FL. 9.4
New York-Newark-Jersey City, NY-NJ-PA 8.7

Table 2: Annual mean values reported by the US EPA (https:
/Iwww.epa.gov/) in similar regions (measured in pg/m3).

for their car-centric infrastructure and intense traffic conditions
feature lower air quality standards. Similarly, in Table 2 we provide
a ranking according to the annual mean values reported by the
U.S. Environmental Protection Agency for similar regions. While
there is a general agreement between the two sources of air quality
measurement, disagreements are also apparent. We discuss poten-
tial sources of this discord including differences in measurement
infrastructure as well as the regions across which measurement is
carried out. As an example, in New York Firefly taxis are primarily
active in the highly populous boroughs of Manhattan, Brooklyn
and Queens whereas the US EPA reports measurement across a
very wide region around New York City, which includes New Jersey.
We discuss key sources of bias in the data, where taxi-based mea-
surement is naturally skewed towards areas that taxis go to. They
come however with the advantage of a very high spatial resolution
view of the city when stations typically installed by government
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Figure 3: Weekly patterns of activity signals (top) and sea-
sonal mean PM2.5 view (bottom) in the New York area.

agencies are more sparsely dispersed across geographies. We argue
that different sources of air quality monitoring are not only comple-
mentary, but essential, considering the environmental emergency
our planet is going through and the epidemiological importance of
air quality for urban populations. Another insightful perspective on
air quality monitoring is the study of the temporal variability of pol-
lution levels over time. In Figure 3 (top) we report mean pollution
levels recorded by Firefly taxis in New York City for each hour of
the week, where each data point corresponds to the mean pollution
level observed at that hour. We normalize each data point with
respect to the max observation during the 168-hour time window
of a week and compare this signal with population fluctuations,
taxi activity as well as traffic congestion signals. Despite the fact
that pollutant particle diffusion and concentration patterns in the
atmospheric realm of a city vary also due to weather conditions (e.g.
wind patterns, humidity and temperature), here we concentrate
our investigation on the link between pollution and human activity
dynamics since the latter is the primary source of urban pollutants
and a defining factor of their concentration dynamics. We also dis-
cuss seasonal variations in air quality patterns. In this context, we
present evidence which suggests a connection between spikes in air
pollution levels and significant climatic or social events. In Figure 3
(bottom) we present weekly mean PM2.5 levels in the New York
region across the course of the year featuring an unusual increase
in air pollution levels in early June 2023, a phenomenon known to
have been induced by forest fires in Canada.
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